Calculus (Tutorial # 4)

Limits and continuity

- 1. Using the $\epsilon \delta$ definition, check the continuity of the following functions.
 - (a) At $x = \frac{1}{2}$, for $f(x) = \frac{1}{x}$, for $x \in (0, \infty)$.
 - (b) At x = 2, for $f(x) = \sqrt{x}$, for $x \ge 0$.
 - (c) At x = 7, for $f(x) = x^n$ for $x \in \mathbb{R}$ and fixed $n \in \mathbb{N}$.
 - (d) At x = 2, for $f(x) = x^{1/n}$ for $x \ge 0$ and fixed $n \in \mathbb{N}$.
 - (e) At x = 0, for $f(x) = x \sin\left(\frac{1}{x}\right)$ if $x \neq 0$ and f(0) = 0.
 - (f) At x = 1, $f(x) = \sin x$, $x \in \mathbb{R}$.
- 2. Let $f:(0,\infty)\to\mathbb{R}$ be $f(x)=x^2$. For fixed $\varepsilon>0$ and arbitrary $a\in(0,\infty)$, show that

$$|x-a| \ge \frac{\varepsilon}{2a} \quad \not\Longrightarrow \quad |f(x) - f(a)| < \varepsilon.$$

Therefore δ should be taken to be $<\frac{\varepsilon}{2a}$ so that

$$|x - a| < \delta \implies |f(x) - f(a)| < \varepsilon.$$
 (1)

Due Date: 07/01/2021

Conclude that there is no δ which is independent of $a \in \mathbb{R}$ for which (1) holds.

- 3. Let $f:(a,b)\to\mathbb{R}$ be a continuous function at $c\in(a,b)$ such that $f(c)\neq 0$. Then using $\epsilon-\delta$ definition show that there exists a $\delta>0$ such that $|f(x)|>\frac{|f(c)|}{2}$, for all $x\in(c-\delta,c+\delta)$.
- 4. Check the continuity of the
 - (a) **Thomae's function** $f:(0,1)\to\mathbb{R}$ given by

$$f(x) = \begin{cases} 0 & \text{for } x \in \mathbb{R} \setminus \mathbb{Q} \\ \frac{1}{q} & \text{for } x := \frac{p}{q} \text{ with } p, q \in \mathbb{N}, \, p, q \text{ have no common factor.} \end{cases}$$

(b) **Dirichlet's function** $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ -1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

5. Let $f: \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \alpha & \text{if } x < 0\\ ax^2 - bx + c & \text{if } x \ge 0. \end{cases}$$

Find the value(s) of α which ensure the continuity of f at 0.

- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Then prove that if f is continuous at one point then it is continuous on \mathbb{R} and $\exists \lambda \in \mathbb{R}$ such that $f(x) = \lambda x$. Does \exists a function $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ but f is not continuous?
- 7. Answer the following questions with justification.
 - (a) Can you construct a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous only at five points?
 - (b) Can you construct a function $f: \mathbb{R} \to \mathbb{R}$ which is discontinuous at every point?
 - (c) Can you construct a function $f: \mathbb{R} \to \mathbb{R}$ which is discontinuous only at the set of natural numbers?
 - (d) Construct a continuous bijection $f:[a,b]\to [c,d]$ such that f^{-1} is also continuous.
- 8. Answer the following questions with justification.
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions such that $\lim_{x \to a} f(x) = l_1$ exists and $\lim_{y \to l_1} g(y) = l_2$ exists. Then is it true that $\lim_{x \to a} (g \circ f)(x)$ exists? What would be your conclusion if g is continuous at l_1 ?
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions such that f is continuous at a and $\lim_{x \to f(a)} g(x) = l$ exists. Then is it true that $g \circ f$ is continuous at a? What would be your conclusion if g is continuous at f(a)?
 - (c) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions such that both f and g are uniformly continuous on \mathbb{R} . Then is it true that $g \circ f$ is uniformly continuous?
- 9. Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be an increasing function. Assume that $a \in I$ is not an endpoint of I. Then prove the following:
 - (a) $\lim_{x \to a^-} f(x)$ exists and $\lim_{x \to a^-} f(x) = \sup\{f(x) : x \in I \text{ and } x < a\}.$
 - (b) $\lim_{x\to a+} f(x)$ exists and $\lim_{x\to a+} f(x) = \inf\{f(x): x\in I \text{ and } x>a\}.$
 - (c) Define the jump $j_f(a)$ of f at a by

$$j_f(a) := \lim_{x \to a+} f(x) - \lim_{x \to a-} f(x)$$

Then prove that f is continuous at a if and only if $j_f(a) = 0$.

10. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{x}{1+x} & \text{if } x \ge 0\\ \frac{x}{1-x} & \text{if } x < 0. \end{cases}$$

Prove the following:

- (a) f is continuous and bounded.
- (b) $\inf\{f(x) \mid x \in \mathbb{R}\} = -1 \text{ and } \sup\{f(x) \mid x \in \mathbb{R}\} = 1.$
- (c) There are no a and b in \mathbb{R} such that f(a) = 1 and f(b) = -1.

- 11. Give examples of functions of each of the following type:
 - (a) $f:(0,1)\to\mathbb{R}$ is continuous, but not bounded above as well as below.
 - (b) $f:(0,1)\to\mathbb{R}$ is continuous, bounded above, not bounded below and does not attain maximum value.
 - (c) $f: \mathbb{R} \to \mathbb{R}$ which is bounded but does not attain maximum as well as minimum value.
- 12. Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Which of the following intervals can appear as image f([a,b])? Give an example for each of them.

$$(\alpha, \beta), (\alpha, \beta], [\alpha, \beta], (\alpha, \infty), (-\infty, \infty).$$

13. Let $f:(a,b)\to\mathbb{R}$ be a continuous function. Which of the following intervals can appear as image f((a,b))? Give an example for each of them.

$$(\alpha, \beta), (\alpha, \beta], [\alpha, \beta], (\alpha, \infty), (-\infty, \infty).$$

- 14. Answer the following questions with justification.
 - (a) Does \exists a continuous function $f:[0,1] \to (0,\infty)$ which is onto?
 - (b) Does \exists a continuous function $f:[a,b] \to (0,1)$ which is onto?
 - (c) Construct a continuous function from (0,1) onto [0,1]. Can such a function be one-one?
 - (d) Does \exists a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $f^{-1}\{x\}$ has exactly two elements?
- 15. Let $f(x) = xe^x$. Then show that $f: (0,1) \to (0,e)$ is bijective.
- 16. Use Intermediate Value Theorem to prove that for any $M \in \mathbb{R}$, $\exists x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\tan(x) = M$.
- 17. Does \exists a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f(\mathbb{Q}) \subseteq \mathbb{R} \setminus \mathbb{Q}$ and $f(\mathbb{R} \setminus \mathbb{Q}) \subseteq \mathbb{Q}$? Justify.
- 18. Is there a continuous function $f:[0,1]\to\mathbb{R}$ such that

$$f(a)f(b) < 0$$
 for all $a, b \in [0, 1]$?

Justify.

- 19. Let $f:[a,b] \to [a,b]$ be a continuous function. Then show that $\exists x \in [a,b]$ such that f(x) = x.
- 20. Prove that any polynomial function $p: \mathbb{R} \to \mathbb{R}$ of odd degree is onto.
- 21. Prove that any continuous one to one function $f: \mathbb{R} \to \mathbb{R}$ is either strictly increasing or strictly decreasing.

- 22. Let $I \subset \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ is a monotone function such that f(I) is also an interval. Then show that f is continuous on I.
- 23. If $f: \mathbb{R} \to \mathbb{R}$ is continuous, and f(x+1) = f(x) for all x, then show that f is uniformly continuous.
- 24. Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be uniformly continuous. Then f maps Cauchy sequences in I to Cauchy sequences in \mathbb{R} . Does the converse hold?
- 25. A function $f: \mathbb{R} \to \mathbb{R}$ is uniformly continuous if and only if whenever $\{a_n\}$ and $\{b_n\}$ are sequences such that $|a_n b_n| \to 0$ as $n \to \infty$, then we have $|f(a_n) f(b_n)| \to 0$ as $n \to \infty$.
- 26. Let $f:[0,\infty)\to\mathbb{R}$ be continuous function. Assume that f is uniformly continuous on $[a,\infty)$ for some a>0. Then show that f is uniformly continuous on $[0,\infty)$.
- 27. Answer the following questions with justification.
 - (a) True or false: A uniformly continuous function on a bounded subset of \mathbb{R} is bounded.
 - (b) Ture or false: Let f and g be two uniformly continuous functions on an interval $I \subseteq \mathbb{R}$. Then the product f.g is also uniformly continuous on I.
 - (c) True or false: Let f is uniformly continuous function on an interval $I \subseteq \mathbb{R}$ be such that $f(x) \neq 0$ for each $x \in I$. Then $\frac{1}{f}$ is also uniformly continuous function on I.
- 28. Determine which of the following functions are uniformly continuous on the given domain?
 - (a) $f(x) = \sin x$, for $x \in \mathbb{R}$.
 - (b) $f(x) = \tan x$, for $x \in (-\pi/2, \pi/2)$.
 - (c) $f(x) = \sec x$, for $x \in (0, \pi/2)$.
 - (d) $f(x) = \sqrt{x}$, for $x \ge 0$.
 - (e) $f(x) = \frac{1}{x}$, for $x \ge \frac{1}{20}$.
 - (f) $f(x) = \sin\left(\frac{1}{x}\right)$ for $x \in (0, \infty)$ (or (0, 1)).
 - (g) $f(x) = \sin x^2$, for $x \in \mathbb{R}$
 - (h) $f(x) = \sin(\sin x^2)$, for $x \in \mathbb{R}$.
 - (i) $f(x) = x^{\frac{1}{3}} \log(1 + |x|)$, for $x \in \mathbb{R}$.
 - (j) $f(x) = \frac{1}{x+1} \cos x^2$, for $x \in [0, \infty)$.
 - (k) $f(x) = x \sin(\frac{1}{x})$, for $x \neq 0$ and f(0) = 0.
- 29. We say that a function $f: I \to \mathbb{R}$ is Lipshitz on I, if there exists a constant L > 0 such that $|f(x) f(y)| \le L|x y|$ for all $x, y \in I$. Now prove that any Lipschitz function f on I is uniformly continuous on I. Does the converse hold?

30. A function $f:(a,b)\to\mathbb{R}$ is said to be Convex if

$$f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y), \text{ for all } x,y \in (a,b) \text{ and for any } 0 < \alpha < 1.$$

Then

- (a) Prove that every convex function on I is continuous on I. Does the converse hold?
- (b) Every increasing convex function of a convex function is convex.
- (c) Suppose $f:(a,b)\to\mathbb{R}$ be a continuous function on (a,b) such that

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}.$$

Then f is convex on (a, b). Does the converse hold?